Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration
نویسندگان
چکیده
In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction.
منابع مشابه
Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro.
The medium spiny neuron (MSN) is the major output neuron of the caudate nucleus and uses GABA as its primary neurotransmitter. A majority of MSNs coexpress DARPP-32 and ARPP-21, two dopamine and cyclic AMP-regulated phosphoproteins, and most of the matrix neurons express calbindin. DARPP-32 is the most commonly used MSN marker, but previous attempts to express this gene in vitro have failed. In...
متن کاملBeyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases
Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease, and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addic...
متن کاملStriatal phosphoproteins in Parkinson disease and progressive supranuclear palsy.
This study was undertaken to evaluate the levels of cAMP-regulated phosphoproteins in the striatum of patients with neurodegenerative diseases of the dopaminergic system. Postmortem samples of caudate nucleus and putamen from 24 control subjects, 23 patients with Parkinson disease, and 13 patients with progressive supranuclear palsy were studied with immunoblotting techniques. The levels of tyr...
متن کاملDARPP-32 Is a Robust Integrator of Dopamine and Glutamate Signals
Integration of neurotransmitter and neuromodulator signals in the striatum plays a central role in the functions and dysfunctions of the basal ganglia. DARPP-32 is a key actor of this integration in the GABAergic medium-size spiny neurons, in particular in response to dopamine and glutamate. When phosphorylated by cAMP-dependent protein kinase (PKA), DARPP-32 inhibits protein phosphatase-1 (PP1...
متن کاملBidirectional regulation of DARPP-32 phosphorylation by dopamine.
Dopamine has been shown to stimulate phosphorylation of DARPP-32, a phosphoprotein highly enriched in medium-sized spiny neurons of the neostriatum. Here, we investigated the contribution of D1-like and D2-like dopamine receptors in the regulation of DARPP-32 phosphorylation in mouse striatal slices. D1-like and D2-like receptors had opposing effects on the state of DARPP-32 phosphorylation. Th...
متن کامل